(7x^2-8x+10)-(2x^2+x+10)=1

Simple and best practice solution for (7x^2-8x+10)-(2x^2+x+10)=1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (7x^2-8x+10)-(2x^2+x+10)=1 equation:



(7x^2-8x+10)-(2x^2+x+10)=1
We move all terms to the left:
(7x^2-8x+10)-(2x^2+x+10)-(1)=0
We get rid of parentheses
7x^2-2x^2-8x-x+10-10-1=0
We add all the numbers together, and all the variables
5x^2-9x-1=0
a = 5; b = -9; c = -1;
Δ = b2-4ac
Δ = -92-4·5·(-1)
Δ = 101
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-\sqrt{101}}{2*5}=\frac{9-\sqrt{101}}{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+\sqrt{101}}{2*5}=\frac{9+\sqrt{101}}{10} $

See similar equations:

| 9=12−3w | | y+(4(6)+5)+(8y-55)=180 | | 5x-1=6x-2 | | 4k−10=3k | | 3x+20+4x-36=180 | | 13j−9j=8 | | X^2+5x=1000 | | (7x^2-5x-+11)-(3x^2+2x-11)=1 | | 1=d4− 3 | | –10+6q=4q | | 5(2c-3)=20 | | 14−2f=6 | | 2y+68+180-4y+8=180 | | (6x^2-4x+1)-(2x^2+6x-1)=1 | | –8f=–3−9f | | 3(x+28)+4(x+35)=14 | | 8=3f+5 | | 120+5x=60-5x | | 2(3x+4)=10x-2 | | 3(x+28)+4(x+34)=14 | | (2x^2-2x+3)-(x^2+5x-5)=1 | | 50-5y=1y-4 | | 0.2x2−5=0 | | 6=2w−2 | | 18+15y=-90 | | 2-2w=6 | | 2x2+0x−18=0 | | x12–5=–4 | | 6x+5=47*3+5x=3*6x+9=75*7x+5=54*7+2x=23 | | (5x^2-x+5)+(x^2+x-5)=1 | | x42=6 | | -2x-6=−,3x-21 |

Equations solver categories